
Attack-Defense Trees in SecurITree®

Introduction to Attack-Defense Trees

Attack tree models have existed since the 1990s (or possibly even the late 1980s). They have
proven to be extremely useful for exploring how adversaries might attack systems.

Attack trees are a bit like the Mouse Trap board game – a Rube Goldberg-like mouse catching
device – wherein once the machine is set in motion a complex sequence of events occur that
ultimately leads to the capture of a mouse. Of course, in the real world, the mouse might well
notice movement in the machine and deduce that it was being attacked (before the mouse
catching basket should drop). This might allow it to quickly take defensive action and protect
itself by placing a stick in one of the machine’s gears. A classic attack tree would not capture the
dynamic interplay between the attacker (the mouse trap machine) and the defender (the mouse).

Academic researchers have recognized this shortcoming and criticized the static nature of attack
trees. Various researchers have proposed extensions to the attack tree metaphor and called the
result attack-defense trees. It should be noted that there seem to be as many different views of
exactly what comprises an attack-defense tree as there are researchers. One of the most lucid
descriptions is found in a 2011 paper by Roy, Kim and Trivedi, “ACT: Towards unifying the
constructs of attack and defense trees”, published in the Security and Communication Networks
Journal.

Attack-Defense Trees in SecurITree

Overview

Support for attack-defense trees in SecurITree will begin with version 5.1 (August 2020). It
should be noted that Amenaza’s implementation of attack-defense trees does not attempt to
mimic any particular academic paper description, although it takes inspiration from them.

Three elements are used to depict an attack-defense tree (or subtree) in Amenaza’s version of
attack-defense trees. The top of any attack-defense tree must always be an AND node. In a
normal AND node, all of the AND’s child nodes (or subtrees) must be completed in order for the
AND condition to be satisfied. The difference with an attack-defense AND node is that some of
the child operations are conditional.

Each subtree beneath the attack-defense AND node depicts a set of attack scenarios (or, in the
case of a probability-based countermeasure, fault tree cut-sets). SecurITree models follow the
convention that, if order is important, the AND’s children should be arranged from left to right.

The various leaf node combinations that satisfy the logic of AND’s subtrees correspond to paths
through the subtrees. In the real world, the leaf nodes correspond to actions by the attacker and
the AND and OR nodes above to states achieved by the combinations of leaf nodes. A clever
defender might identify that successful attacks might require the attacker to pass through certain
of these nodes. In that case, the defender might place sensors in the real world locations
corresponding to those nodes. For instance, if a series of attacks required the adversary to pass
through a door, then a sensor could be placed at the door. In the case of network attacks against
critical servers, an intrusion detection system might monitor a network segment. Those attack

Figure 1 – Evolving an attack tree into an attack-defense tree

scenarios that traverse a sensor node would cause the sensor to be tripped or triggered and the
defender alerted to the presence of the attacker.

Once the defender is aware that an attack is underway, they would respond appropriately. In the
case of the door alarm being triggered, a security guard might be dispatched to investigate. Note
that the guard might not normally patrol that area, but the security alert would generate a special
response.

That response would occur after the event was detected. The response would be depicted as
either an additional attack subtree describing a sequence of events the attacker would have to
overcome to defeat the additional capabilistic countermeasure (e.g., knock out the security guard)
or, if the countermeasure were probabilistic in nature, hope that the countermeasure would fail of
its own accord.

Both the subtree containing the sensor and the additional countermeasure subtree
(whether capabilistic or probabilistic in nature) must be located directly beneath the
attack-defense AND node, and according to our conventions of ordering activities from left
to right, the response countermeasure subtree must always appear to the right of the
subtree containing the sensor.

Creating an Attack-Defense Tree

To create an attack-defense tree (or, more usually, subtree) in SecurITree the analyst first
identifies (or creates) the AND node that will be the attack-defense tree’s parent – the Attack-
Defense AND node (or simply, A-D AND node). In most regards, this AND node is similar to
ordinary AND nodes in the tree. However, it differs in that it contains a list of sensor-defense
pairs that describe the relationships between sensors and the defender’s responses when a
particular sensor is tripped. Consider the tree in Figure 1 below.

Figure 2 – Sensor-Defense Pair List
Creation

Figure 3 – Sensor placement on a node

As drawn, all three of the subtrees below Attack-Defense Tree need to be achieved in order for
the top root node to be fulfilled. But suppose that the right-most subtree, Additional Procedure,
was expensive and that the defender didn’t want to deploy it unless they felt they were under
attack. Analysis might show that the adversary would be most likely to complete Procedure 1 by
using the Alternate approach to procedure 1 (involving Exploit 2 and Exploit 3). It would
therefore make sense for the defender to install a sensor that would tell themself if the adversary
had managed to perform the Alternate approach to procedure 1. The defender would respond by
deploying an additional control – a control that would require the adversary to traverse the
Additional Procedure subtree.

To define the sensor in the model the analyst would right-click on Attack-defense tree and select
the Define Sensor-Defense Pairs option. A dialog would then open and they would click Add
(Figure 2).

A new window would appear showing the AD-AND
node and the subtrees beneath it. Begin by entering
the Sensor-defense pair description.

Note that only subtrees containing nodes eligible to
be sensor nodes are displayed. For instance,
subtrees that are part of links are excluded. The
analyst would then select Alternate approach to
procedure 1 and click Select (Figure 3)

The analyst must now specify which
countermeasure subtree will be invoked if the
previously selected sensor is traversed in an
attack scenario. In this example (Figure 4) the
Additional Procedure ... subtree has been
selected.

In order for a defense subtree to be eligible to
be selected (and displayed to the user) it needs
to be to the right of the sensor node and
immediately beneath the AD-AND node.

Figure 4 – Defense subtree selection

Figure 5 – Completion of S-D pair

Figure 6 – Completed Attack-Defense tree

The user then completes the creation of the
sensor-pair definition in the A-D List node by
clicking OK (Figure 5).

The completed A-D tree now appears (Figure 6).

Figure 7 – Attack scenario list for A-D tree

The following are the attack scenarios (Figure 7).

